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There is enormous recent interest in the development of models for rate 
processes because rates are an almost universal characterization in the physical 
and biological sciences. In this paper we provide an introduction to several of 
the problems to be discussed in greater depth by other speakers at a symposium 
held at the National Institutes of Health on May 6-8, 1985. This review will 
focus on (1) the Smoluchowski model for reaction rates together with its exten- 
sion by Onsager, (2)first passage time formalism for discrete and continuous 
master equations and Fokker-Planck equations, (3) the Kramers model and its 
extensions, (4) diffusion in the presence of trapping centers. 
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1. I N T R O D U C T I O N  

There is an approximate gap of 50 years between the discovery of the mass 
action law and the first calculation of rate constants by Smoluchowski in 
terms of parameters characterizing the microscopic state of the reacting 
molecules. Since the time of Smoluchowski an enormous number of 
statistical mechanical and kinetic models for rate processes have been 
developed. These have served to deepen our understanding of the under- 
lying physical processes and bring into focus occasionally profound 
mathematical problems whose solution are required to elucidate these 
processes. There is now so much and so varied an activity in this general 
subject area that it seemed reasonable to hold a meeting to summarize and 
put into perspective at least some of the current research in chemistry, 
physics, and mathematics, relating to the calculation of reaction rates. This 
meeting was held at the National Institutes of Health at Bethesda, 
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Maryland, May 6-8, 1985, and the remaining papers in this volume are 
written by the invited speakers. 

In this paper, introductory to the more advanced expositions, we sum- 
marize a few of the original papers on which contemporary research in the 
field of reaction rates and first passage times is based and indicate where 
some of the further research has led. It is by no means complete and would 
require far too much space to make it so. Successive sections will deal with 
the models of Smoluchowski and Onsager based on a diffusion picture, first 
passage time models based on equations adjoint to the Fokker-Planck and 
master equations, the Kramers model and the effects of traps on diffusion 
processes and random walks. The last section enumerates some of the omit- 
ted topics. A number of very useful reviews have appeared on one or more 
of these topics. The oldest of these, by Noyes, (1) on the relation between the 
Smoluchowski approach to the calculation of rates and the use of escape 
probabilities, is a classic in the field. The second, by Calef and Deutch (2~ on 
diffusion-controlled reactions, covers much of the recent literature and 
overlaps the present paper to some extent, and the third, by Hynes (3~ on 
the theory of reactions in solutions, discusses many of the issues involved in 
the solution to the Kramers equation from a physical point of view. In 
addition to these a number of recent monographs contain related and 
enlightening material. In particular we mention those of van Kampen (4~ 
and Gardiner. (5) 

2. THE S M O L U C H O W S K I  AND ONSAGER MODELS 

The modeling of chemical reaction rates in terms of diffusion in the 
presence of absorbing bodies seems first to have been suggested by 
Smoluchowski in his classic study of the kinetics of coagulation in colloidal 
solutions. (6) The Smoluchowski model consists of a single absorbing sphere 
of radius R, surrounded by a sea of infinitesimal diffusing particles initially 
scattered uniformly throughout space with concentration c. Smoluchowski 
calculates the rate at which particles react with (are absorbed to) the 
sphere finding 

R k=4rtDRc[1-t (TZ b-~)l/21 (2.1) 

where D is the diffusion constant. The second time-dependent term in 
brackets represents the effect of the depletion of particles in the immediate 
neighborhood of the sphere. From this rather simple beginning the study of 
rate processes has led to the study of ever finer details of these processes 
using both diffusion theory and the theory of stochastic processes to model 
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microscopic features of the underlying reactions. Many of these develop- 
ments will be treated in greater detail in the following papers in this sym- 
posium volume. 

Calculations for the Smoluchowski model are reasonably 
straightforward but even the simple expression in Eq. (2.1) has raised 
questions that have broadened our understanding of the basic assumptions 
in the Smoluchowski and related models. To calculate the rate constant in 
Eq. (2.1) one solves a diffusion equation subject to an absorbing boundary 
condition on the surface of the sphere. If p(r, t lro, 0) is the probability 
density for the location of an unabsorbed particle at time t then the boun- 
dary condition for absorption is p(R, t Iro, 0)=0,  from which Eq. (2.1) 
follows after some calculation. The t-1/2 term is clearly bothersome at suf- 
ficiently short times. Collins and Kimball (7) therefore proposed the 
replacement of the absorbing boundary condition by a so-called radiation 
boundary condition which, in the present case is 

7cRZD ~rr r=R = gp (2.2) 

where ~c is a constant. Further work along these lines was performed by 
Frisch and Collins. (8) The radiation boundary condition is equivalent to 
the physical assumption that not all encounters of particles with the sphere 
lead to an absorption. The use of this (radiation) boundary condition 
indeed leads to a more reasonable formula for the rate constant, replacing 
Eq. (2.1). Debye (9) has generalized the Smoluchowski theory to allow an 
interaction potential between the reacting particles. Shoup and Szabo (t~ 
have developed the corresponding rate constants for a two-step reaction of 
the form A +B ~ (AB)*~ AB, where (AB)* is an encounter complex. 
Some of the problems that arise in framing proper boundary conditions 
have recently been discussed by Monchick (11) in terms of detailed models of 
the encounter reaction. Agmon (12) has presented results on boundary con- 
ditions that allow for desorption as well as absorption, following earlier 
work by Goodrich (13) and others on this possibility. (~3 ~7~ 

A diffusion-controlled reaction is one in which the time for two bodies 
to diffuse to the same neighborhood is the rate-limiting step, the reaction 
time itself being negligible in comparison. At first glance the Smoluchowski 
theory would appear to be deficient as a model for calculating rates in dif- 
fusion-controlled reactions because it is phrased in terms of a single central 
sphere and does not take correlations into account. Questions relating to 
the importance of correctly including many-body effects were first raised by 
Waite (18'19) and Noyes (1) and have been analyzed by many authors since. 
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The rate of a diffusion-controlled reaction refers, in the simplest case, to a 
reaction of the form A + B ~ P for which the mass-action equation is 

[4 ]  = [/~] = -k(t)[A][B] (2.3) 

The object of any theory is to calculate k(t) from a microscopic picture. 
Waite proposed to overcome the difficulty caused by the omission of 
correlations in the Smoluchowski model by solving an infinite hierarchy 
of equations for successive joint densities of 1, 2, 3 .... of the particles. 
His development of the theory truncated the hierarchy at second order, 
replacing the three-particle density by the form implied by an assumption 
of pairwise interaction forces, thereby obtaining a linear second-order 
equation. Similar results were obtained at about the same time by 
Monchick, Magee, and Samuel. ~2~ The equation derived by Waite ~ for 
diffusion and reaction can be written in terms of the pair density c(r, t) as 

~c 
- -  = D V Z c  - f (r ,  t ) c  (2.4) 
c~t 

where the last term represents the effect of reaction. The function f in 
Waite's development is expressed in terms of singlet probability densities 
which arise from the superposition approximation. The important con- 
clusion that follows from Waite's analysis is that his approximation implies 
the validity of the Smoluchowski approach. However, Smoluchowski's 
assumption of an absorbing boundary condition is to be replaced by the 
radiation boundary condition, Eq. (2.2), first suggested by Collins and 
Kimball.~7) Noyes(1) proposed to overcome the difficulty in Smoluchowski's 
theory in a more phenomological way by introducing an encounter density, 
h(t), defined so that h(t) dt is the probability that two particles separating 
from a nonreactive encounter at t = 0 wilt react with each other for the first 
time between t and t + dt. Noyes then writes for k(t), the expression 

k(t)=k(O) I I -  f~ h(T) d~ (2.5) 

where k(0) is the rate constant derived from equilibrium statistics. Szabo, 
Lamm, and Weiss (21) showed that in the presence of a potential, V(r), the 
right-hand side of Eq. (2.5) is to be multiplied by the factor exp [-/~V(R)]. 
The exact interpretation and validity of Noye's results is still somewhat 
controversial as may be appreciated from some of the work of 
Monchick (11'12) and Razi Naqvi, Waldenstr6m, and Mork. (23) Difficulties 
arise when passing from a microscopic to a macroscopic picture and in the 
reconciliation of elements of the atomic and continuum pictures of the 
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kinetics of reaction rates. The results of these studies suggest that the 
choice of boundary conditions in the Smoluchowski picture may be much 
more complicated than believed earlier. A completely satisfactory 
resolution of the various difficulties associated with the choice of boundary 
conditions is not yet at hand and it is yet unclear whether any author has 
treated the microscopic analysis at a proper level. There have been no 
investigations of possible experimental techniques to help decide on the 
choice of appropriate boundary conditions. 

A recent quite interesting approach to the subject was taken by Tor- 
ney and McConnell. 124) They used the formalism of lattice random walk 
theory to show that if the reactant particle is modeled as a perfectly absor- 
bing point on a lattice, the geminate recombination approach of Noyes and 
the Smoluchowski diffusion (or random walk) models are identical. They 
also discuss two-dimensional reaction kinetics as might be appropriate for 
reactions occurring, e.g., in a phospholipid bilayer. The interesting result in 
two-dimensional reactions is that k(t) is predicted to go to 0 as (ln t) 1 
This phenomenon of the asymptotic decay of the rate constant undoub- 
tedly corresponds to the known difference between random walks in two 
and three or more dimensions. (25) 

The Smoluchowski model refers to the rate at which many diffusing 
particles react with a single target particle, neglecting interaction forces. 
Onsager (26) later considered the related problem in which he asks for the 
probability that a pair of ions at a given initial separation will recombine 
under the influence of a mutual Coulomb attraction. In this case the dif- 
fusion takes place in a nonuniform field. Although it may not appear 
initially that the reaction rate and recombination probabilities are 
necessarily related we will show later that they can be calculated in quite 
similar ways from the underlying mathematical models. 

While the calculation of recombination rates does not lead to very dif- 
ficult mathematical problems for the Coulomb potential, the time-depen- 
dent problem is significantly more difficult to solve. There has been con- 
siderable recent interest in the development of approximation techniques 
for the solution of the time-dependent Onsager problem with the Coulomb 
and more general potentials. The techniques include perturbation methods 
valid at short times, singular perturbation methods, and numerical 
solutions of the Smoluchowski equation. Pedersen and Larsen (27~ have 
compared the results of several approximations to the solution of the 
Laplace transformed equation. Since the transforms are not easily inverted 
these authors compare the numerical and approximate solutions in the 
transform domain. The question of how error estimates in the s domain 
translate into errors in time is not easy to answer. The most comprehensive 
approach to the calculation of diffusion-controlled rate constants is that of 



8 Weiss 

Sibani and Pedersen. (28) It leads to expansions in inverse powers of t, but 
as in the analysis by Pedersen and Larsen,/27/ Sibani and Pedersen only 
calculate errors in the Laplace transform domain. An alternative approach 
to the calculation of the Laplace transform of k(t) taking advantage of the 
fact that its transform satisfies a Ricatti equation has also been explored by 
these authors. (29) The most comprehensive time-dependent solution to the 
Onsager problem is that of Hong and Noolandi, (3~ which has been applied 
to problems in the radiation chemistry of solids and liquids. A useful dis- 
cussion of time-dependent geminate recombination as applied to photocon- 
ducting solids is given in the review article by Noolandi. (31/ 

If ~b(r, 0) is defined to be the probability that an electron will escape 
from its associated ion, and if the initial separation of the pair is equal to r 
and the angle with the electric field equal to 0, then Onsager shows that 
~b(r, 0) satisfies 

V(e ~w V~b) = 0 (2.6) 

where/~ = (kT) 1 and V= -eZ/(ar) - e r r  cos 0. This relation must be sup- 
plemented by boundary conditions which Onsager idealizes by assuming 
that the ion has a negligible radius. Thus he assumes that ~b(0, 0) = 0, which 
is the condition for an absorbing boundary, and ~b(oe, 0 )=  1. If one 
averages over all angles the solution given by Onsager is equivalent to 

((P) = 27r dv e x p ( - 1 F r v - u / r )  Io[(2Fuv) 1/2 ] du (2.7) 

where the parameter F is related to the magnitude of the electric field E by 
F =  eRr,](2kT), where r,. = eZ/(akT) is known as the Onsager radius. In the 
absence of a field (~b)=exp( - rc / r ) .  

The Onsager theory has been generalized in a number of directions. 
G6sele and Seeger (32) calculated the reaction rate for a pair of radicals dif- 
fusing in an anisotropic medium: Tachiya (33) has shown that in an 
anisotropic medium, characterized by a diffusion tensor D Eq. (2.6) 
generalizes to 

V-De ~v.V~b=0 (2.8) 

which is the adjoint of the appropriate Smoluchowski equation. When 
there is a partially absorbing surface at the ion the boundary condition at 
the surface of the ion is 

n. D .V~ = ~c~ (2.9) 

where n is the outward normal to the surface and ~ is a constant charac- 
terizing the reaction efficiency. A further generalization given by Sano (34) is 
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to the recombination problem of an electron in the presence of a finite 
number of sinks. In the absence of a field the escape probability for an elec- 
tron from a finite set of fixed cations is just the product of escape 
probabilities from the individual cations, i.e., the escape probabilities are 
independent provided the reaction radii are equal to zero. Recombination 
probabilities for a radical in the presence of two sinks was given by 
Sano. (34) Deutch and his collaborators(3S 37~ have analyzed, using 
approximate methods, recombination probabilities with many reactive 
sinks in an isotropic medium. An extensive analysis of the Onsager 
problem with imperfect reaction at the surface was made by Rice and 
Baird, (38) and Sano and Tachiya. (39) These also include the effects of 
scavenging, that is, the possibility that the electron will be removed by a 
uniformly distributed set of traps. Sano and Tachiya (4~ have also examined 
the Onsager problem when the reactant particle is constrained to diffuse on 
a spherical surface and the theory has been applied to the analysis of data 
on reactions occurring on micellar surfaces. 

A simple derivation of the relation for the escape probability, ~b, that 
appears in the Onsager problem, and the infinite time bimolecular rate 
constant, k ( ~ ) ,  appearing in Eq. (2.6), is that of Berlin, Cordier, and 
Delaire. (41) They show that the relation can be found quite easily if the 
Smoluchowski equation is integrated over time from 0 to 00. Quite recently 
the Onsager problem for particles constrained to perform a random walk 
on a lattice has been analyzed by Scher and Rackovsky. (42) 

3. FIRST PASSAGE TIMES 

Shortly before the work of Onsager discussed in the last section, Pon- 
tryagin, Andronow, and Witt 145) derived results that have proved to be of 
central importance for many models in the stochastic theory of rate reac- 
tions. In order to understand the contribution of these authors we must 
introduce some terminology. Let us assume that a particle moves in a 
space, S, that can be decomposed into an interior , / ,  together with a boun- 
dary, B. The first-passage time, T(x), is defined to be the time at which the 
particle first reaches B starting from an arbitrary point, x, in L Many 
processes in chemical physics can be modeled in terms of Markov 
processes, that is, processes in which knowledge of the state of the system 
at some time t is sufficient to predict its state at times t' > t. This prescrip- 
tion rules out cases in which a variable memory is necessary for prediction 
forward in time. These may be exemplified by models with excluded 
volume in which one needs the entire history of the process (discrete ran- 
dom walk or diffusion process) to predict its behavior in the future. A par- 
ticular class of Markov processes is that in which the motion of a single 
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particle can be described by a Fokker Planck (henceforth abbreviated 
as FP)  equation. (4'5) 

Let the position of a particle at time t be denoted by r(t), and let 
p(r, t [ ro ,  0)dr  be the probability density that r(t) is somewhere in the 
volume ( r , r + d r )  at time t given that r (0 )=ro .  The FP equation is 
obtained under the conditions 

limo 1At f (r - ro)~ p(r, t + At I ro, t) dr = b,(ro, t) 

lira 1 f ~ , ~ o ~  ( r - r o ) i ' ( r - r o ) i p ( r , t + L l t l r o ,  t) dr=a: / ( r  o,t) 
(3.1) 

with all of the higher-order infinitesimal moments, defined similarly to aij 
and bi, being equal to zero. The resulting second order equation is 

0p 1 0 2 0 

where L is the linear operator indicated by the spatial derivative terms. The 
important result of Pontryagin, Andronow, and Witt (45) is that if 
p(r, t [ r0 ,  0) is regarded as a function of the initial position r0, then 
p(r, t l ro, 0) is the solution to the adjoint equation 

0p 1 02P + Y, b, 0p (3.3) 
0 t  = L+ p = 2 2 2 aa 0Xoi ex-------~j 0x0-----~ 

t l i 

This fact allows one to write simple looking equations for the moments of 
the first passage time. For example the mean first passage time, (T(ro)) ,  
defined by 

(T( ro ) )  = fo ~ dt f p(r, tlro, O)dr (3.4) 

can be shown to satisfy 

L + (T(ro) ) = - 1 (3.5) 

In one dimension one can solve this, as well as equations for higher 
order moments, explicitly. In the case of a D-dimensional spherical system 
with a potential V(r), the first passage time, (T(r)) can be determined 
from the equation (46'47) 

rl- D d ard 1 -- flD(r) -~r d rD--iD(r)__ (T(r)) ( T ( r ) ) = - I  (3.6) 
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with appropriate boundary conditions. For example, the use of a radiation 
boundary condition at R and a reflecting boundary condition at R', 

d(T(r )>  r _ ~c 
dr = R D(R)  

d(T(r))dr ~ =R, = 0  

- - -  ( T ( R ) >  

(3.7) 

leads to the solution 

( T ( r ) ) =  . D ( u )  p~q(U) ~ Peq(y) d Y +  [~r 1 (3.8) 

where 

f5 pD-1 e x p [ - f l V ( p ) ]  dp (3.9) Peq(r) = r D 1 exp[ flV(r)]/i 

Some of the implications as well as generalizations of these formulas have 
been discussed by Schulten, and Szabo./48) Mozumder has recently applied 
some of these results to problems in radiation chemistry/49t 

The foregoing analysis is mathematics rather than physics since we 
have not related it to a physical model underlying the calculation of reac- 
tion rates. Let us suppose that we have a one-dimensional potential barrier 
as shown in Fig. 1 and we wish to calculate the rate of escape of particles 
over the barrier. The diffusion of particles will be characterized by a density 
p(x, t I x0) such that p(x, t I Xo) dx is the probability that a particle initially 
at x o will be in the interval (x, x + dx) at time t. If B is the location of the 
barrier maximum then the number of unreacted particles at time t is 
defined to be 

N(t) = N(O) _o3 p(x, t I Xo) (P(Xo) dx dxo (3.1o) 

where (p(Xo) is the initial density. The relative net rate at which particles 
cross the barrier is 

k(t) = - N ( t ) / N ( t )  (3.11) 

In the single well case shown in Fig. 1 it is usually assumed that the 
backwards reaction rate is negligible so that particles that cross the barrier 
do not recross it in the opposite direction. If it is further assumed that N(t) 
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)< 

Figure 1 

is exponential then k(t)=k=const, and since N(t)=N(O)exp(-kt) it 
follows that the mean residence time in the potential well is 

( t ) = - j o  t-~dt=~ (3.12) 

Hence one can calculate the reaction rate k by calculating the average 
residence time in the well. This analysis can be extended to the double well 
case of Fig. 2 as shown by Northrup and Hynes, (s~ and later with some 
emendation by Schulten, Schulten, and Szabo. (46) 

We note that identification of the rate constant as the reciprocal of a 
first passage time is a consequence of assuming exponential decay for N(t). 
Newell/51~ was the first to discuss conditions under which the exponential 
approximation is a useful one for diffusion processes. Much of the rigorous 
theory is summarized in the book by Mandl (52) for diffusion processes and 
that of Keilson (53~ for nearest-neighbor random walks on the line. A more 
heuristic approach to this class of problems for the Fokke~Planck  
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X 
Figure 2 

equation has been given by Lindenbergetal.  t54) All of these analyses 
depend on successive eigenvalues for the relevant differential operator being 
widely separated in an appropriate sense. Since the Smoluchowski equation 
for motion in a time-independent field can be reduced to Sturm-Liouville 
form, one knows (55) that asymptotically 7n ~ n2-  For many easily calculated 
examples ,~2/~1 ~4 in accordance with the asymptotic relation and for these 
the exponential approximation is extremely effective. The large separation 
property of the lowest eigenvalues can be shown to depend on the ratio of 
the distance of the initial position from that of the maximum potential to a 
representative displacement in a fixed time interval. The larger this ratio 
the greater is the separation of eigenvalues. So far there has not been any 
rigorous analysis to justify extensions of the method suggested by some 
authors, (48'56) but calculated results indicate that the generalizations might 
be quite useful provided that the necessary theory indicating the region of 
validity is developed. 

4. K R A M E R S '  T H E O R Y  

One of the seminal papers in the theory of reaction kinetics is that of 
Kramers, (57) which appeared in 1940. Kramers considered the problem of a 
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one-dimensional Brownian particle moving in an external field of force 
characterized by a potential V(x). The particle is initially caught in a 
potential hole and can only escape by passing over a potential barrier. 
Kramers proposed studying the rate of the escape of particles over the 
barrier, and in particular the dependence of this rate on temperature and 
viscosity. The new feature of the Kramers model, in contrast to those of 
Smoluchowski and Onsager, is that it describes diffusion in phase space. It 
gives, as the equation of motion of the Brownian particle in one dimension, 

2 + (7/m)2 + (l/m) dV/dx = r (4.1) 

where m is the mass, 7 is the viscosity, and ~(t) is a Langevin, or fluc- 
tuating, term. The fluctuating term ~(t) is assumed to be white noise. 
Relaxation of this assumption leads to considerably greater complications 
in the analysis. Equation (4.1) can be rewritten as the first-order stochastic 
system 

2 = v  

i ) -  
7v 1 dV 1 (4.2) 

+ -  ~(t) 
m m d x  m 

Let p(x, v, t )dx  dv be the probability that the Brownian particle is to be 
found in an infinitesimal area in the phase space centered at the point 
(x, v). After making the appropriate assumption on the fluctuating force 
one can derive the following equation for p: 

Op V'(x) Op Op 0 ( . kTOp'~ 
a-7 = 

(4.3) 

Van Kampen has attributed this equation to Klein. (58/ 
The difficulty with dealing with Eq. (4.3) is that it is two dimensional. 

Kramers therefore examined the regimes characterized by high and low 
viscosities. The high-viscosity regime is one in which the acceleration term, 
2, can be neglected in Eq. (4.1), in comparison with the remaining terms. 
This will generally be true for times t>m/?. In that situation the phase 
space density attains its equilibrium Maxwell distribution in velocity in a 
much shorter time than it takes to reach spatial equilibrium, so that 
p(x, v, t) can be factorized as 

p(x, v, t) = g(x, t) exp[--mv2/(2kT)] (4.4) 

provided that the force, V'(x), does not vary appreciably over distances 
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that are O[(kTm/72)l/2]. The function g(x, t) can then be shown to satisfy 
the Smoluchowski equation (59'6~ in one spatial dimension: 

8g 8 [ 8g mV'(x) 1 
8t 8x D 8x Y g (4.5) 

An instructive and systematic procedure for effecting the reduction from 
Eq. (4.3) to Eq. (4.5) is presented in Gardiner's monograph, (5) which also 
shows how to calculate systematic corrections to the Smoluchowski 
equation using the method of adiabatic elimination of fast variables. In the 
high-viscosity regime Kramers makes the assumption that the escape rate is 
determined mainly by details of the potential near the minimum at A in 
Fig. 1, and near the barrier maximum at B. This is equivalent to the 
assumption that the transition times from the initial Boltzmann 
equilibrium state to the barrier are much shorter than the time spent in 
making the transition through the barrier. Thus Kramers approximates the 
potential in the neighborhood of these two points by 

r n ~  2 
V ( x ) ~ ~ -  ( x - x A )  , x~xA 

moo 2 
V(x)  ~ Vo - - 5 -  (x - xB) 2, x ~  xB 

(4.6) 

and by calculating the (one-way) current through the barrier, finds that the 
equilibrium rate is 

k - mO)A (2)B 
2~7 exp(-flVo) (4.7) 

In a more precise treatment of the high-viscosity Kramers model 
Chandrasekhar (6~ assumes that the steady state solution to Eq. (4.3) can 
be written in the form p(x, v, t )~ f (x ,  v)exp[-m(v2/2+ V)/(kT)] where 
f(x, v) satisfies an easily derived steady state equation. The current through 
B is calculated as 

f 
o8 

k = vp(xB, v, t) dv (4.8) 
~ - -  o o  

which is found to be 

{i 2 llJ2  t k=2-~c~c 4-~SmZ+C~ -2~m exp(-fiVo) (4.9) 

822/42/1-2-2 
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This reduces, in the limit 7>2mo)~ to Eq. (4.7) as it should, but reduces in 
the limit 7 ~ 2m~o~ to 

k t (DA = ~ -  exp(-fiVo) (4.10) 

which is the prediction of transition rate theory. (61/ This prediction is 
almost certainly unreliable at sufficiently low friction in the cases like 
unimolecular decomposition or isomerization, in which there are reactant 
or product wells in the potential curve. Kramers obtained a result for the 
low-viscosity limit by deriving an equation for the action. Because only a 
small amount of energy is lost per period of oscillation in a neighborhood 
of the initial equilibrium in the potential well, one can define action-angle 
variables, and average over a single cycle. The slow dissipation process 
makes it plausible that the phases become uniformly distributed after a 
short time so that only an equation for the energy remains. His result in 
using this equation is 

7 [ ~ A  , 
k = 2 ~ m k T  exp~ - fi Vo) (4.11 ) 

where I is an action integral whose evaluation is discussed by Matkowsky, 
Schuss, and Tier. (62~ A slightly more accurate version of Kramers' theory in 
the high-friction limit is due to Edholm and Leimar, 163) who show that the 
retention of higher-order terms in the expansion of the potentials in 
Eq. (4.6) can lead to a considerable gain in accuracy compared to the 
quadratic approximation of Kramers. The physical interpretation and 
deficiencies of Kramers' theory are very clearly discussed in the comprehen- 
sive review by Hynes. (3) 

Kramers' original theory has stimulated an enormous amount of 
research, both in the improvement of the mathematical analysis and in the 
formulation of new, physically less restrictive models. The most satisfactory 
mathematical analysis of the original Kramers model is that of 
Matkowsky, Schuss, and Tier, (62) who formulate the problem in terms of 
first passage times. These authors start by observing that the rate, k, can be 
expressed as 

k = (z I q- 2"c2)-1 (4.12) 

where Vx is the mean time for a particle to go from A to B in Fig. I, and ~2 
is the mean time to go from B to the appropriate separatrix in the phase 
plane and then escape the well. The authors show, by means of a singular 
perturbation analysis of the equations for mean first passage time, that 
with their detailed results for rl and r 2, Eq. (4.12) goes over into the 
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limiting forms in Eqs. (4.7), (4.9), and (4.11) obtained by Kramers for 
appropriate regimes in the parameter 7. Carmeli and Nitzan (64) and Biit- 
tiker, Harris, and Laudauer (65/have alternative more physical theories that 
allow one to bridge the gap between the two limiting forms provided by 
Kramers. Numerical calculations by Matkowsky, Schuss, and Tier (62~ on a 
particular potential show that the Carmeli-Nitzan approximation agrees 
quite well with their own while the Bfittiker-Harris-Landauer (65~ form dif- 
fers considerably from it. The numerical comparison, however, was made 
only for a particular potential. Whether the agreement that was found 
holds more generally is not known at present. Visscher (66) has also derived 
an empirical connection formula from numerical solutions to the 
Kramers-Klein equation. Mangel (67~ has discussed the theory of rate con- 
stants in the high friction limit by using the backwards version of the 
Smoluchowski equation. This can be solved exactly for the mean first 
passage time and yields the Kramers expression to lowest order. Because of 
the many competing theories it would be advantageous to develop both 
numerical and molecular dynamics models against which to test each of the 
approximations so has to have a better feeling for their range of validity. 

A great many authors have considered the Kramers' problem for 
physical models that differ from the one discussed by Kramers. In the 
original Kramers' analysis the potential contains a single well. 
Brinkmann, (68) and shortly thereafter, Landauer and Swanson ~69) and 
Langer, (7~ treated the two-well problem in which there may be a current in 
both directions over the potential barrier. The Kramers analysis in the 
high-friction limit leads to results that depend on local behavior of the 
potential function in the neighborhoods of the minimum and maximum, 
for the single-well case. A number of authors have considered parametric 
forms for the potential in an attempt both to describe the time course of 
the kinetics and to check the validity of Kramers' results. One of the first of 
these investigations is a paper by van Kampen 171/ which studies a double 
square well potential for which eigenvalues and eigenfunctions can be 
calculated explicitly. A detailed calculation of flow rate across the 
separating barrier shows that Kramers' calculation does indeed lead to the 
correct value. Larson and Kostin (72'73) have considered both the high-fric- 
tion or Smoluchowski limit as well as the moderate-friction case. In the 
first of their papers (72) they treated high-friction limit together with the 
quartic potential 

g(x) = r ( 0 ) ( x  2 - -  a2)2/a 4 (4.13) 

which allowed them to obtain approximate eigenvalues by using a singular 
perturbation analysis for the lowest ones, and by local approximations to 
the potential curve for the higher ones. They also consider the 
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Smoluchowski case for a quartic potential in three dimensions by using 
variational methods. This work was continued in a second paper (73~ which 
treats the full Kramers equation for the quartic potential by similar 
methods. At low-friction values their techniques are not accurate but they 
propose an empirical formula, following Visscher (66) which leads to 
agreement within 3 % with accurate numerically calculated values for the 
rate constant. How much these results can be generalized is not at all clear 
from the exposition. Larson (74~ has recently examined the problem posed 
by a sharp potential barrier, rather than the case contemplated originally 
by Kramers. The source of the problem in this situation is that the 
Smoluchowski equation is a valid approximation to the full Kramers 
equation provided that the force, V'(x), does not change appreciably over 
intervals of length (kT/(m72)l/2). Clearly this cannot be satisfied by poten- 
tial surfaces that have discontinuous slopes. Larson uses singular pertur- 
bation techniques to show that approximations obtained from the 
Smoluchowski equation are useful only when the potential energy peak is 
extremely high compared to kT. Results related to the sharp barrier were 
obtained by Matkowsky and Schuss, (75) Ludwig, (75a) and by Matkowsky, 
Schuss, and Ben-Jacob. (76~ There is still room for further analysis of the 
sharp potential function problem as evidenced by the numerical results 
given by Larson (74) and compared by him to the results of his and other 
theories. 

One of the most active current areas of research in generalizing the 
Kramers theory is that in which the Markovian assumption implicit in the 
Langevin form of Eq. (4.1) is relaxed, and replaced by a more complicated 
form involving a memory. Several authors(77 81a) have considered 
generalized Langevin equations, of which 

m2(t)= F( t ) -  y ~(~) x ( t -  r) & + ~(t) (4.14) 

is typical, where/~ = (kT) -1, ~(t) is the (nonwhite) noise, F(t) the external 
force, and c(t) is the correlation function 

c(t) = (n(0) n(t)) (4.15) 

The original Kramers equation is believed to be adequate for a large par- 
ticle in Brownian motion, but not for a system in which the size of the 
molecule being followed is of the same order of magnitude as the solvent 
molecules. (3) Equation (4.14) is sometimes referred to as a generalized 
Langevin equation. In several analyses of non-Markovian effects the 
investigators found that the form of the Kramers' expression for the reac- 
tion rate is valid except that the parameters 7/m and e) c are replaced by 
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suitably defined functions of time. (77 8x) It is generally agreed that non- 
Markovian processes must be important for reactions in a solvent. (3) This 
also seems to be implied by data of Fleming and his collaborators (82 84) on 
the isomerization of DODCI. The utility of the non-Markovian theory for 
interpreting these data has also been pointed out by Bagchi and 
Oxtoby. (sS) However, it is not presently known whether the formulation of 
the problem represented by Eq. (4.14) is a satisfactory one, or whether the 
experiments cited above are adequately represented in terms of the one- 
dimensional models that form the starting points of all of the analyses cited 
thus far. 

There have only been a few attempts to generalize the Kramers theory 
to multidimensional nonpotential systems, the earliest of these being the 
work of Landauer and Swanson, (69) Langer, (7~ and Matkowsky and 
Schuss. (75) A recent generalization by Gardiner (5'86) gives a reasonably sim- 
ple generalization of Kramers' theory. Gardiner closely follows an idea first 
introduced by Northrup and Hynes (5~ and by Skinner and Wolynes. (sT) 
Gardiner's analysis essentially divides the space into two subspaces and 
calculates the rates of interchange between the two subspaces by first-order 
relaxation equations. While the formalism in this calculation is relatively 
simple it requires a knowledge of the equilibrium probability distribution. 
In the absence of a potential this requirement can pose severe practical 
problems. Multivariate systems for which the drift force cannot be derived 
from a potential may, for example, be open systems which have dissipative 
structures or bistable systems described by fields such as magnetic systems. 
The calculations of Schuss and Matkowsky (88) for multidimensional 
systems are also formulated in terms of a potential. Implicit in most 
calculations is the assumption of low noise. Up to this time there has been 
no extension of Gardiner's approach to the non-Markovian case. One 
advantage that singular perturbation methods have over Gardiner's techni- 
que is that ttie calculation of correction terms is relatively straightforwardl 
Caroli, Caroli, and Roulet (89) have also analyzed multidimensional systems 
using the assumption that the nonpotential part of the force term is small 
enough to be treated by perturbation theory. They how that in the high- 
friction limit the relaxation time characterizing interchange rates between 
two basins decreases when a nonpotential term is included in the force. 
This is related to a more general result proved by Risken. (9~ Another 
variation on the Kramers analysis is that involving a time-dependent 
potential. Some of the complicated interactions of time scales in this 
problem have been considered by Caroli e t  al. (91) Clearly mu'ch more work 
is required, both theoretical and experimental, before 'the Kramers theory 
can be reliabl}r applied to kinetic data. 

Another approach to the derivation of both Markovian and non- 
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Markovian equations that allows one to calculate reaction rates and other 
dynamic properties of reacting systems is that developed by Adelman and 
his collaborators. (92-99) This theory differs from the ones described so far, in 
that an attempt is made to model the many-body properties of the system 
more precisely than is done in theories based on a diffusion picture. 
Adelman divides his picture of a condensed phase reaction into a primary 
system containing the molecules of interest, and a heat bath. The heat bath 
is represented as a set of coupled harmonic oscillators which interacts with 
the primary system molecules. One can then write a reduced set of 
Langevin equations for molecules in the primary system, in which the 
Langevin terms depend on the behavior of the heat bath. Because of the 
nonlinear coupling between the heat bath and primary system the resulting 
equations must generally be solved numerically. The implications of this 
theory are still being explored, and are summarized in several review 
articles, (9s'99) as well as by an article in this Proceedings by Professor 
Adelman. 

5. FIRST PASSAGE T IMES FOR MASTER EQUATIONS 

Thus far we have described systems whose properties are most 
naturally described by the solution to diffusion equations or generalized 
diffusion equations. Physical systems in which quantum effects may be 
important suggest that problems involving discrete energy levels, or lattice 
variables, may also be useful in theories of reaction rates. Montroll and 
Shuler (1~176 were apparently the first to analyze first passage time problems 
for a master equation in the context of chemical kinetics. They consider a 
gas of diatomic molecules each of which can be represented as a harmonic 
oscillator. That is, the energy state space consists of equally spaced levels, 
E~ = nhv, and dissociation occurs when a single bond accumulates sufficient 
energy, i.e., reaches level N for the first time. If the interaction of the 
molecule with the heat bath is sufficiently weak so that first order pertur- 
bation they can be used Landau and Teller (1~ show that the transition 
rates between levels can be written 

kmn=[(m+ l)cSn 1,m+m(~n+l,m]klo (5.1) 

The energy of the system is characterized by the quantum level n. The 
probability that the energy level at time t is n will be denoted by pn(t). 
These probabilities satisfy 

Dn= ~ (knmpm-kmnp,) (5.2) 
m 
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which is a simple example of a physically significant master equation. The 
probability that dissociation has not occurred by time t for this model is 

N - - I  

s(t)= y, po(t) (5.3) 
/ 7 = 0  

and the mean time till dissociation, or mean first passage time is 

(TD) = S(t) dt (5.4) 

Montroll and Shuler (j~176 were able to calculate quantities like the 
mean first passage time, although the calculation of the survival probability 
is much harder in general. Under appropriate conditions akin to those first 
given by Newell, (51) the survival probability can be approximated by a 
single exponential decay. Early discussions of the first passage formalisms 
for master equations were given by Kim/1~ and Weiss./1~ It is now well 
known that the formalism for calculating moments of first passage times for 
one-dimensional systems with transitions allowed to nearest neighbors only 
is formally identical with the theory developed in Section 3 for the FP 
equation. For discrete master equations the matrix transpose takes the 
place of the adjoint operator in Eq. (3.3). Explicit expressions can be writ- 
ten down for the first passage time moments of such systems, exemplified 
by the result in Eq. (5.11) below. Possibly the simplest derivation of these 
results is that given in Ref. 104, where it is shown that the second-order dif- 
ferential equations appearing in the analysis of the Fokker Planck problem 
are replaced by second-order difference equations in the lattice case. One 
can deal in this way with first passage time problems for continuous time 
random walks. (~~ For example, if we have a continuous time random 
walk for which one or both of the end points, 0 or N, are absorbing, and 
ar(t) dt[b,(t)dt] is the joint probability that the sojourn time at r is 
between t and t + dt and that the succeeding transition is a step to the right 
(left), and Qr(t) is the probability density for the first passage time to 
absorption starting from lattice point r, then the Q's satisfy 

Qr(t) = at(27) Qr+ 1( t - -  27) d27 + br(27) Qr l ( t -  27) d27 (5.5) 

This system must be solved subject to boundary conditions exemplified by 
QN(t)=O, Qo(t)=~toao(27 ) Ql(t-27)d% for a single absorbing point at 
r = N. If one introduces Laplace transforms for the functions in Eq. (5.5), 
letting 6(s) = s /~(s) = ~C~~ Qr(s) = 5~{Qr(t)) then Eq. (5.5) is 
equivalent to the system 

dlrZ12Or_l +(2dlr--1)ZJOr_l +(dlr+br--1) Q_.r_l=O (5.6) 
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where A f r = f r  + 1 - - f  r" In discrete time units the Laplace transforms are 
replaced by generating functions with respect to time. 

While Eq. (5.6) is not easily solvable in general it can be used to 
generate moments. The mean first passage time to absorption for a random 
walk that starts from r, for example, can be expressed as 

Hence if we set 

Io ~ dO~ s=O+ (5.7) ( t ( r ) )  = tQr(t) dt = ----~-s 

O r = ar(t ) dt 

(5.8) 

2 lZr = t[ar(t  ) + b,.(t)] dt 

the equation satisfied by the ( t ( r ) )  is 

Or+l A 2 ( t ( r ) )  + (20r+, -- 1 ) A ( t (r )  ) = --/~r + I (5.9) 

which can be solved in closed form. In the simplest case in which 

at(t) = 0r2 exp(-) . t ) ,  br(t) = (1 - 0r)2 exp(-.~t) (5.10) 

so that Or is just the probability of moving to the right from lattice site r, 
g r =  2 -1. The solution for the ( t ( r ) )  when the lattice sites are r = 0, 1 ..... N, 
N corresponding to an absorbing point, is 

N-:  i 
2 ( t ( r ) ) =  ~ [OjPeq(J)]-1 ~, Peq(S) (5.11) 

j--r s=0 

in which 

Peq(r)= Peq(O) rI~ 1 Oj (5.12) 
j=o (1 - -Oj+i )  

are  the equilibrium probabilities in the absence of absorption. The 
probability Peq(0) is found by requiring the probabilities to be properly 
normalized. 

The formalism just described is readily extended to provide equations 
similar to Eq. (5.11) for higher moments. Many applications have been 
made of relations similar to Eq. (5 .11)o ther  than the straightforward 
solution of problems like those posed by the Montroll Shuler model. To 
name a few, Oppenheim, Shuler, and Weiss (l~ have used such relations to 
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develop an asymptotic analysis of rate processes with multiple stationary 
states, van Kampen (~~ first derived the discrete analog of the Kramers 
theory, and H/inggi eta/. (1~ have recently used a similar analysis to dis- 
cuss the transition between the master equation and the FP equation. 
Seshadri, West, and Lindenberg (~~ have discussed approximations derived 
from Eq. (5.11), and their application to problems in unimolecular decom- 
position. Hiinggi and Talkner (1~ derived analogous results for processes 
with steps to second nearest neighbors, but these lead to relations not 
nearly as compact nor as useful as those for nearest-neighbor processes. 

Thus far, although a few solutions are known for model master 
equations with long-range steps, they have not proved to be as generally 
useful as those for nearest-neighbor steps, because the longer-range models 
usually have a specific parametric form. The next type of generalization 
adopted by many authors involves an approximation to the master 
equation by an FP equation, which can be obtained by assuming that the 
system is large in some sense. These investigators then introduce scaling 
variables in terms of the appropriate large parameter/lw) This 
approximation is not unambiguous as shown recently by Grabert, H/inggi, 
and Oppenheim, (1H) and H/inggi eta/. (1~ The FP equation can be regar- 
ded as a continuous analog of the nearest-neighbor random walk in the 
sense that one is able to find expressions for the moments in closed form as 
discussed in Section 3. An interesting alternative approach to the problem 
of calculating moments of the first passage times for master equations has 
recently been suggested by Matkowskyetal .  (H2) and Knessletal.  (~2a) 
These authors point out that just as a master equation can be formally 
related to a Kramers-Moyal expansion so can the backwards master 
equation, whose solutions gives the distribution times, be expanded for- 
mally as an infinite-order differential equation. They work in discrete time, 
but the analysis is easily translated into continuous time. Let the position 
of a random walkers at step n be denoted by xn. The sequence of steps 
follows from a recursion xn+~= xn + et/~, where t/, is a random variable 
governed by transition densities w(z ] x), where w(z [ x) dz = 
P r o b { z < ~ , < z + d z l x n = x } .  The master equation for p(y, n l x ) ,  the 
probability density for position at step n, given the initial position x, can be 
expressed as 

p(y, n + l i x ) -  p(y, n l x) 

= [ p ( y - e z ,  n I x) w(z I Y - e z ) - P ( Y ,  n [ x) w(z t Y)] dz 
- - o o  

- ~, ( - 1 )  nek 0 k 
--k=l ~yk [Pk(Y) P] (5.13) 
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where the #k(Y) are moments of w(z I Y) 

f 
o o  

~k(Y) = zkw(z [ y) dz (5.14) 
- - O ( 3  

The second line of Eq. (5.13) is just the usual Kramers Moyal expansion. 
The backwards master equation can be analyzed in exactly the same way 
to yield an expansion similar to Eq. (5.13). Matkowsky et aL (m) show that, 
for example, the mean first passage time from a point x, (T(x) ) ,  satisfies 

~k dk(T(x) )  - - 1  (5.15) 
~ ~(x)  ax ~ 

k = l  

They then analyze this equation using singular perturbation theory for 
small e, in principle taking account of all terms in the series. This allows 
development of a theory which can be used for processes with large 
deviations, as opposed to the Fokker-Planck approximation which 
amounts to the truncation of Eq. (5.15) at the k = 2  term. A multidimen- 
sional generalization of the theory has been promised. 

Finally, we mention the theorem of Wald (1~3) that allows one to derive 
approximations for moments of the first passage time. Let us consider a 
one-dimensional random walk in discrete time, let N be the first passage 
time, and let XN be the point at which absorption occurs, so that XN <~ --a 
o r  XN~b. Let w ( z l x ) = w ( z )  be independent of x, where w(z l x )  is the 
transition density defined earlier, and let ~(s) be the two-sided Laplace 
transform of w(z). Wald showed that 

( ~-- N(s) exp(-- SXN) ) = 1 (5.16) 

holds exactly. This identity has been extensively used in sequential 
analysis (H4,HS) and can be used to generate approximations to the dis- 
tribution of first passage times. 

6. T R A P P I N G  P R O B L E M S  

The final topic to be mentioned in any detail is that of trapping, which 
may be regarded as a form of reaction-diffusion process in which fixed reac- 
tion centers are randomly distributed through space. The subject was first 
analyzed in the framework of random walks on a lattice, as a model for the 
kinetics of annealing by Beeler and Delaney (116'117) and later by 
Rosenstock, (118) as a model of luminescent emission from an organic solid 
with impurities. Since these early analyses, many other investigators have 
applied the model to phenomena in chemical physics. We mention just a 
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few contributions to this widely studied subject. The main focus of interest 
in this class of problems has been the survival time or time to trapping of a 
random walker, or diffusing particle, in a space in which traps are ran- 
domly embedded. Even a calculation of the survival function leads to 
mathematical problems of great complexity, and few exact results are 
known. Let us first consider the problem of traps on a lattice, in which 
each lattice point can be a trap with probability c. Let us suppose that the 
random walk takes place in discrete time, and let S, be the distinct number 
of sites visited by a random walker in n steps. Then the probability that 
random walker will survive for at least n steps is exactly equal to 

P ( n ) =  ( ( 1 - c )  s") (6.1) 

where the average is both over all trap configurations and random walks. 
Although Eq. (6.1) is exact it is not too useful because it is difficult to 

calculate statistical properties of S,.  Rosenstock (1~8) has suggested that 
P(n) be approximated by 

P(n) ~ (1 - c) <s"> (6.2) 

which is a potentially useful form since the asymptotic dependence of ( S ~ )  
on n has been known since the work of Dvoretzky and Erd6s. (119) 
However, the higher moments of Sn cannot be calculated by the same 
technique as used to find ( S n )  and so the approximation in Eq. (6.2) is not 
easily correctable. An asymptotic Gaussian/12~ distribution for S, has been 
derived for D/> 3 dimensions. The mean ( S , )  is asymptotically propor- 
tional to n in these dimensions. In D = 3 the variance, a2(S,)~bn Inn while 
for D > 3, a2(S,)~bn, where in each case b is a computable constant. This 
has been applied {12~) to the calculation of the survival function, P(n), but 
since the form of the distribution of Sn is not known for n small, the results 
are best valid for very low trap concentrations. An asymptotically exact 
result for P(n) has been derived by Donsker and Varadhan {1=) for large n. 
They show that 

1 ~2/(D + 2) 
nD/(D + 2) (6.3) in P(n)~ - a  In i-Z--7_ c /  

where D is the dimension and a is a constant depending on the lattice. This 
form for the result has been suggested by a number of investigators usually 
starting from a heuristic argument whose main point is that long-term sur- 
vival is primarily determined by large voids. (123'124) Support for this conten- 
tion has been provided by results of an exact calculation in one dimension 
by Weiss and Havlin, (125) who showed that by varying the distribution of 
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gap-flee intervals, one can obtain a different asymptotic form for the sur- 
vival function. A difficulty with both the result in Eq. (6.3), and that based 
on the Gaussian form for the distribution of Sn is that in the absence of 
correction terms no one knows how large n must be to insure the utility of 
the asymptotic form. Klafter, Zumofen, and Blumen (126) suggest, from their 
simulations, that Eq. (6.3) is valid for values of n such that P(n) <~ 10 21 in 
D = 2 dimensions. Using a very accurate combination of exact enumeration 
and simulation, (127) Havlin et al. (128~ have found that Eq. (6.3) is valid for 
P(n) <~ 10 -13. Fixman (129) has studied a continuum analog in which traps 
are modeled as absorbing spheres, not necessarily located on a lattice. He 
finds Eq. (6.3) to be valid only for P(n)<~ 10 -67, but is able to fit his 
simulated data very well at low trap concentrations by using an effective 
medium approximation. (13~ The Fixman model, it should be noted, is a 
many-body version of the Smoluchowski problem, and his analysis implies 
that the Smoluchowski model is valid only at extremely low trap concen- 
trations. Otherwise Fixman has shown that taking approximate account of 
trap interactions leads to good agreement with simulated results over the 
measureable range in P(n). 

The Fixman analysis is, of course, not the first to use effective medium 
approximations in the context of the continuum random trapping problem. 
This approach has been pursued by Cukier and his collaborators, (131 134) 
by Calef and Deutch, (135) and Muthukumar.  (~36) Muthukumar and 
Cukier (132) have applied a multiple scattering formalism to the same 
problem. The results of these investigations are usually presented in terms 
of the macroscopic diffusion constant and reaction rate k, and their depen- 
dence on the concentration of trapping spheres. Other techniques such as 
those based on the t-matrix approximation (137) have also been used to 
study this problem. (138'139) 

Of particular interest is the appearance of nonanalytic dependence of 
the diffusion constant D, and the rate k, on the concentration of traps, 
although there is still some disagreement between different 
authors (2,35,a4~176176 on some of the coefficients in the approximate 
expansions. In a recent mathematically rigorous calculation den 
Hollander (141) has shown, using the methods of Jain and his 
collaborators, (12~ that one also finds nonanalytic behavior for the mean 
trapping time as a function of trap concentration for low concentrations. 

Aside from investigations of diffusion and rate constants there have 
been a number of papers dealing with time-dependent solutions in the 
presence of trapping centers. Results along this line can be obtained in 
closed form in one dimension when traps are perfectly absorbing, because 
of the simple geometry but even in one dimension it does not seem possible 
to derive comparable results for imperfect traps. Many versions of the trap- 
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ping problem are currently being investigated. Representative of these are 
problems involving trap motion and trap annihilation. (24'142-145/ The mobile 
trap model is clearly a more realistic model for chemical reaction rates than 
is the classical fixed trap picture. In the annihilating trap model a trapping 
event leads to the disappearance of both the trap and the diffusing particle. 
Most of the information on these systems is derived from simulation 
studies since the problems are even more complex than the so-far unsolved 
static trapping problem. Finally, these problems have also been tackled for 
diffusion on fractal s t ruc tu r e s .  (143'144'146) 

There have been many simulation studies of the lattice trapping 
problem but Fixman (~29) is the only one to have concentrated mainly on 
the continuum problem. Simulation has been the only way of beginning to 
understand the effects of inhomogeneity of the underlying lattice. Such 
studies are suggested by models for the kinetics of photosynthesis, and have 
been energetically pursued by Kopelman and his collaborators. Reviews of 
some of this work is to be found in Ref. 147 and 148 as well as in an article 
in this volume. (149) In any case, considerable computing power would be 
necessary to properly check the extensive theoretical analyses that have so 
far appeared in the literature, and supercomputers would certainly be 
needed to check higher-order terms or possible logarithmic corrections in 
the expansions that have been found by approximate methods. Not only is 
it difficult to solve problems involving randomly placed traps but even 
deterministically placed traps can pose considerable problems. Scher and 
Wu (~5~ and Montroll and West (151) have developed formalisms for the 
motion of a random walk on a lattice in which traps occur on a sublattice. 
For this special case one can obtain closed form expressions for many 
quantities of interest. 

In all of the references to this point the traps have been represented in 
the diffusion equations in terms of absorbing boundary conditions at the 
appropriate surfaces. Wilemski and Fixman in a series of widely cited 
papers (152) take a different tack by representing the effects of traps or reac- 
tion centers by a space dependent term in the diffusion equation itself. This 
is in addition to a possible constant radiation term which is easily handled. 
The resulting equation is then written 

@=Lp-k ( r )p  (6.4) 
c~t 

where L is the relevant diffusion operator and k(r) represents the effects of 
traps. Equation (6.4) is a forward equation. In order to study dis- 
appearance rates, one calculates properties of the survival function 

P(t) = ff p(r, t [ ro, 0) ~0(ro) dr dro (6.5) 
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where rp(ro) is the initial density. Let us note that Eq. (6.4) can be regarded 
as the lowest order of an infinite hierarchy of equations as pointed out in 
Wilemski and Fixman's original article. (152) Higher-order equations allow 
for many-body effects. However, even Eq. (6.4) poses difficult mathematical 
problems in general. Wilemski and Fixman suggest an approximate 
solution for P(t) when the initial condition, gO(ro), is assumed to be the 
equilibrium density Peq(X0) SO that it satisfies Lpeq(X)= 0. Several further 
justifications exist for the Wilemski-Fixman approximation. Doi, (153) for 
example, shows that it corresponds to the simplest choice of trial function 
in a variational formulation, and Battezati and Perico (154) develop a pertur- 
bation theory based on the smallness of the trap radius relative to other 
significant dimensions. A further approach is to assume that Eq. (6.4), in 
nondimensional form is 

0p - ek(r)p (6.6) N=Lp 

where e is a small parameter. Straightforward perturbation theory (155) com- 
bined with a renormalization step suffices to obtain the Wilemski-Fixman 
form. An exact solution obtainable in one dimension for k(x)=x 2 and 
V = 0 compared to the approximation shows that an increase in e degrades 
the accuracy of the approximation. Since the Wilemski-Fixman 
approximation is exact for all e when k(x)= (~(x-Xo) but not in general 
when k(x) is the sum of two 6 functions one sees that its validity depends 
both on the localization of k(x) and on e being a legitimate perturbation 
parameter. Agmon and Hopfield (156) use a separation of variables to show 
that when the operator L in Eq. (6.4) has the Smoluchowski form 

8( ~v8 ) 
L = D -~x ~e ~x e~v (6.7) 

a solution to Eq. (6.4) is easily found in the limits D ---, 0 and D ~ oe for a 
general initial condition p(x, 0). These are 

p(x,t)=p(x,O)exp[-k(x)t], D--,O 

p(x, t)= p(x, O)exp I _ t  f k(x) peq(x) dx ] (6.8) 

A formalism related to that developed for the solution of Eq. (6.4) was 
recently used in an interesting analysis of the effects of viscosity on elec- 
tronic relaxation processes in which the intramolecular potential does not 
have a barrier to the motion of an initially formed excited state. (~57) Thus 
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the process is a complement to the Kramers model. The authors consider 
the motion of a solute particle on a one-dimensional potential surface, with 
a position dependent sink term in addition to the radiative decay constant. 
If momentum can be neglected so that one has the analog of conditions 
under which the Smoluchowski equation is valid in the Kramers problem 
then the starting point of the analysis by Bagchi, Fleming, and Oxtoby is 

O2p +8• ~tt=A-~x 2 Ox(XP)-[knrS(x)+kr] p (6.9) 

where A and B are inversely proportional to the viscosity and kr and k~, 
are constants. Three specific forms for S(x) are considered, a sink at the 
origin, a Gaussian, and a Lorentzian. While the latter two cases cannot be 
solved exactly they nevertheless allow one to infer how the nonradiative 
decay rate varies with viscosity. The results are in qualitative agreement 
with experimental data on radiationless decay of the excited singlet state of 
triphenyl methane dyes. (158'1s9) Alternative approaches to this problem are 
those of Skinner and Wolynes. (j6~ 

7. A M I S C E L L A N Y  OF  T O P I C S  

Limitations of space prevent our discussing many further topics that 
have attracted recent attention. Among these we mention the derivation of 
proper boundary conditions for diffusion equations starting from discrete 
random walk limits,/16~'162~ and the effects of radiation boundary conditions 
as opposed to absorbing boundary conditions for these equations.~12) There 
have been a few papers (~63"164) dealing with situations in which the reac- 
tivity of a molecule fluctuates (e.g., the accessibility of a binding site of a 
protein is modulated by internal motions). The problem of extending the 
theory of diffusion-influenced reactions to nonuniformly reactive species 
(e.g., the ligand binding site of a macromolecule covers only a portion of its 
surface) has been considered by a number of authors. (16s-169) The 
mathematical difficulty underlying these problems is that the relevant par- 
tial differential equations must be solved subject to so-called mixed boun- 
dary conditions (i.e., the boundary conditions are different on different 
parts of the molecular surface). The only exact solution available is that for 
the steady-state association constant to a circular reactive site on an 
infinite inert plane (169'17~ and for a few terms in the short- and long-time 
expansions of the corresponding time dependent rate. (~71) For  more com- 
plicated geometries progress can be made by replacing the usual mixed 
boundary conditions by the requirements that the radiation boundary con- 
dition is satisfied on the average and the flux is constant above the reactive 
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part of the molecule/165) This appears to be an excellent approximation 
and allows a class of problems to be solved analytically. Recently it has 
been used to quantitate the role of surface diffusion as a rate-enhancing 
mechanism for a small reactive site on a plane and a sphere. (172~ The 
problem of competition between a large number of small reactive sites on 
an inert spherical surface (e.g., receptors on a cell) has also been 
approximately treated. (a65'17~ Another set of problems that has recently 
engaged the attention of several investigators is that of the analysis of the 
Kramers equation in the presence of absorbing boundaries. (174 181) Because 
there are no solutions in closed form to the Kramers equation even in the 
absence of boundaries, only the barest beginnings have been made into the 
study of the effects of boundaries. 

Many papers have appeared on the kinetics of decay from an unstable 
initial state to a stable final state./182 ~s4) Some of the complexity of detail 
of such processes can be appreciated from the work of Suzuki, who 
suggests that the decay process can be divided into at least three regimes, 
in which the fluctuating forces and nonlinearities alternately play the more 
significant roles. Different approaches exist for obtaining approximate 
solutions to this problem, and it is not yet clear whether all of the 
qualitative features of such systems are completely understood. 

Several first passage time problems, in addition to those related to 
ligand binding to cells, have arisen in modeling of biological processes. One 
of the most widely cited of these by Adam and Delbriick ~85) relates to dif- 
fusion of a particle to a target area. In that paper the authors suggest that 
such diffusion is facilitated in many cases by the presence of surfaces in 
which the target is imbedded. In their assumed process diffusion to the 
target then takes place in two stages. In the first the particle diffuses to the 
surface, and in the second it diffuses on the surface to the target. The major 
idea behind this formulation of target seeking as two-stage process is that a 
significant reduction in mean first passage time to the target can be 
achieved over that attainable by fully three-dimensional diffusion. An 
extension of these ideas has been made to intramicellar kinetics by Frank, 
Gratzel, and Kozak, (186) and by Hatlee etal.  (187~ A second application of 
first passage time formalism in a biological framework is the theory of 
protein folding as developed by Karplus and Weaver. ~88) These authors 
suggest that a protein consists of several microdomains which move by dif- 
fusion and must coalesce in order to form a structure. This work has been 
continued by Weaver ~189) and Zientara, Nagy, and Freed. ~19~ The general 
problem of energy transfer to either static or moving acceptors is suggested 
by the modeling of the photosynthetic reaction. (~9~-195~ Models for this 
phenomenon have been extensively developed by Blumen, Zumofen, and 
their collaborators, (196-~99) and by others. (2~176176 
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Finally, we note that many problems in determining maximal dis- 
placements of random walks or diffusion processes are closely related to 
first passage time problems. For example, the probability that the 
maximum displacement of a diffusion process on a line is less than X at 
time t is equal to the probability that the first passage time of the process 
to (X, co) exceeds t. This duality has been exploited by a number of 
authors.~2os 2u) Further applications of some of the analysis discussed in 
this paper abound in the physical and biological sciences. Many of these 
will be more thoroughly discussed in the remaining papers appearing in 
these Proceedings. 
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